Jumat, 21 Januari 2011

KONVERSI SATUAN

Awalan satuan yang sering digunakan adalah:

 
Konversi Satuan SI

SATUAN METRIK

Ada tujuh satuan pokok antara lain:

Besaran PokokLambangSatuan MKS danSingkatanSatuan CGS dan Singkatan
Panjangl (length)Meter (m)Centimeter (cm)
massam (mass)Kilogram (Kg)Gram (gr)
Waktut (time)Detik / Sekon (s)Sekon (s)
SuhuT (Temperature)Kelvin (K)
Kuat ArusIAmpere (A)
Jumlah Molekul
Mole (Mol)
Intensitas Cahaya
Candela (Cd)

BESARAN POKOK DAN TURUNAN

BESARAN POKOK
Besaran pokok adal besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain.
Ada tujuh besaran pokok dalam sistem internasional yaitu:
Panjang, Massa, Waktu, Suhu, Kuat Arus, Jumlah Molekul, dan Intensitas Cahaya.

BESARAN TURUNAN
Besaran turunan adalah besaran yang satuannya diturunkan dari besaran pokok, atau besaran yang didapat dari penggabungan besaran- besaran pokok.

Model, Teori, Hukum dan Prinsip

Model, Teori, Hukum dan Prinsip

Tahukah anda apa yang dimaksudkan dengan model, teori dan hukum ? Ketika mempelajari fisika, kita selalu menggunakan istilah-istilah ini. Kata “model” yang digunakan dalam fisika berbeda pengertiannya dengan kata “model” yang digunakan dalam kehidupan sehari-hari, seperti “model iklan” atau “foto model”. Mungkin hingga saat ini anda juga masih kebingungan atau bahkan tidak mengetahui pengertian model, teori dan hukum dari sudut pandang ilmu fisika. Oleh karena itu pada kesempatan ini GuruMuda ingin membantu anda untuk lebih memahami makna beberapa istilah tersebut.
Model
Ketika fisikawan ingin memahami suatu fenomena tertentu, mereka selalu menggunakan model. Dalam fisika, model adalah suatu analogi alias perbandingan mengenai suatu hal dengan sesuatu yang sudah kita ketahui dalam kehidupan sehari-hari. Selain itu, model juga merupakan sebuah bentuk sederhana dari suatu sistem yang sulit untuk dianalisis secara keseluruhan. Para fisikawan selalu menggunakan perbandingan mengenai suatu hal atau fenomena yang rumit tersebut dengan sesuatu yang kita kenal dalam kehidupan sehari-hari.
Misalnya model gelombang cahaya. Dalam kenyataannya cahaya bersifat sebagai gelombang dan hal ini telah dibuktikan melalui eksperimen di laboratorium. Walaupun demikian, cahaya yang kita lihat langsung dengan mata tidak menunjukkan bentuk sebagai gelombang. Untuk mengatasi hal ini, para fisikawan menggunakan analogi alias perbandingan gelombang cahaya dengan gelombang air, karena kita sudah mengetahui dan sering melihat gelombang air. Jadi kita bisa membayangkan bahwa cahaya seolah-olah terbuat dari gelombang-gelombang, karena dalam berbagai eksperimen di laboratorium para fisikawan mengamati bahwa cahaya juga berprilaku sebagai gelombang.
Selain contoh model gelombang cahaya, ada juga contoh lain yaitu model partikel. Misalnya kita menganalisis bola yang melakukan gerak parabola di udara. Dalam kenyataannya, bola tersebut tidak benar-benar bulat, tetapi ada lapisan-lapisan di kulitnya (anda dapat mengamati bola sepak). Ketika bergerak di udara, gerakan bola tersebut dihambat oleh gesekan udara dan dipengaruhi oleh tiupan angin. Berat bola juga selalu berubah-ubah, sesuai dengan ketinggiannya dari permukaan bumi dan bumi juga sedang berotasi. Apabila kita memasukan semua hal itu dalam perhitungan maka akan menjadi persoalan yang sangat rumit. Oleh karena itu kita menganggap bola sebagai obyek atau partikel, di mana gerakannya seolah-olah dalam ruang hampa (gesekan udara diabaikan), beratnya dianggap tetap alias tidak berubah, dan rotasi bumi juga kita abaikan. Sekarang kita dengan mudah menganalisis gerakan bola menggunakan model ini. Walaupun banyak hal diabaikan dalam model di atas, tidak berarti kita juga mengabaikan semua hal yang mempengaruhi gerakan bola. Dalam menganalisis gerak parabola yang dilaukan bola, kita tidak bisa mengabaikan gravitasi yang membuat gerakan bola berbentuk parabola. jadi intinya, model yang kita pilih harus difokuskan aspek penting yang ingin kita analisis. Model yang baru dijelaskan secara panjang lebar ini dikenal dengan julukan model ideal. Tujuan adanya model adalah memberikan kita gambaran atau pendekatan.
Teori
Makhluk apakah teori itu ? jika anda pernah mendengar nama eyang Einstein maka anda mungkin mengetahui salah satu teorinya yang luar biasa, yakni teori relativitas khusus. Mengapa disebut teori, bukan model ? apakah perbedaan antara teori dengan model ?
Model relatif lebih sederhana dan mempunyai kesamaaan struktur dengan fenomena yang dipelajari, sedangkan teori lebih luas, lebih mendetail dan memberikan ramalan yang dapat diuji dan sering hasil pengujian memiliki ketepatan yang tinggi. Terkadang karena sebuah model dikembangkan dan mempunyai cakupan fenomena yang lebih luas maka dapat disebut sebagai teori. Contohnya dalah teori gelombang cahaya dan teori atom.
Hukum
Bagaimanakah dengan hukum, misalnya Hukum I Newton ?
Hukum merupakan pernyataan yang singkat tapi bersifat umum dalam menjelaskan perilaku alam. Terkadang pernyataan itu membentuk suatu persamaan atau hubungan, misalnya Hukum II Newton. Suatu pernyataan disebut hukum jika secara eksperimental berlaku secara luas. Hukum-hukum ilmiah bersifat deskriptif; menjelsakan bagaimana alam berprilaku, tidak menjelsakan bagaimana alam harus berprilaku. Berbeda dengan hukum politik yang preskriptif, di mana menjelaskan bagaimana manusia harus beprilaku. Suatu pernyataan disebut hukum jika validitasnya telah teruji secara luas. Walaupun demikian, jika terdapat informasi-informasi baru yang muncul maka hukum-hukum tertentu harus disesuaikan, bahkan harus dilenyapkan.
Prinsip
Jika hukum mempunyai cakupan yang luas, maka prinsip mempunyai cakupan yang terbatas, misalnya prinsip Archimedes atau prinsip Pascal. Prinsip dan hukum memiliki kemiripan, hanya pernyataan sebuah prinsip kurang umum, sedangkan pernyataan yang dikategorikan ke dalam hukum memiliki cakupan yang luas.

Senin, 17 Januari 2011

Bidang utama dalam fisika

Riset dalam fisika dibagi beberapa bidang yang mempelajari aspek yang berbeda dari dunia materi. Fisika benda kondensi, diperkirakan sebagai bidang fisika terbesar, mempelajari properti benda besar, seperti benda padat dan cairan yang kita temui setiap hari, yang berasal dari properti dan interaksi mutual dari atom. Bidang Fisika atomik, molekul, dan optik berhadapan dengan individual atom dan molekul, dan cara mereka menyerap dan mengeluarkan cahaya. Bidang Fisika partikel, juga dikenal sebagai "Fisika energi-tinggi", mempelajari properti partikel super kecil yang jauh lebih kecil dari atom, termasuk partikel dasar yang membentuk benda lainnya. Terakhir, bidang Astrofisika menerapkan hukum fisika untuk menjelaskan fenomena astronomi, berkisar dari matahari dan objek lainnya dalam tata surya ke jagad raya secara keseluruhan.
Bidang Sub-bidang Teori utama Konsep
Astrofisika Kosmologi, Ilmu planet, Fisika plasma Big Bang, Inflasi kosmik, Relativitas umum, Hukum gravitasi universal Lubang hitam, Latar belakang radiasi kosmik, Galaksi, Gravitasi, Radiasi Gravitasi, Planet, Tata surya, Bintang
Fisika atomik, molekul, dan optik Fisika atom, Fisika molekul, Optik, Photonik Optik quantum Difraksi, Radiasi elektromagnetik, Laser, Polarisasi, Garis spectral
Fisika partikel Fisika akselerator, Fisika nuklir Model standar, Teori penyatuan besar, teori-M Gaya Fundamental (gravitasi, elektromagnetik, lemah, kuat), Partikel elemen, Antimatter, Putar, Pengereman simetri spontan, Teori keseluruhan Energi vakum
Fisika benda kondensi Fisika benda padat, Fisika material, Fisika polimer, Material butiran Teori BCS, Gelombang Bloch, Gas Fermi, Cairan Fermi, Teori banyak-tubuh Fase (gas, cair, padat, Kondensat Bose-Einstein, superkonduktor, superfluid), Konduksi listrik, Magnetism, Pengorganisasian sendiri, Putar, Pengereman simetri spontan

Teori fisika utama

Meskipun fisika membahas beraneka ragam sistem, ada beberapa teori yang digunakan secara keseluruhan dalam fisika, bukan di satu bidang saja. Setiap teori ini diyakini benar adanya, dalam wilayah kesahihan tertentu. Contohnya, teori mekanika klasik dapat menjelaskan pergerakan benda dengan tepat, asalkan benda ini lebih besar daripada atom dan bergerak dengan kecepatan jauh lebih lambat daripada kecepatan cahaya. Teori-teori ini masih terus diteliti; contohnya, aspek mengagumkan dari mekanika klasik yang dikenal sebagai teori chaos ditemukan pada abad kedua puluh, tiga abad setelah dirumuskan oleh Isaac Newton. Namun, hanya sedikit fisikawan yang menganggap teori-teori dasar ini menyimpang. Oleh karena itu, teori-teori tersebut digunakan sebagai dasar penelitian menuju topik yang lebih khusus, dan semua pelaku fisika, apa pun spesialisasinya, diharapkan memahami teori-teori tersebut.
Teori Subtopik utama Konsep
Mekanika klasik Hukum gerak Newton, Mekanika Lagrangian, Mekanika Hamiltonian, Teori chaos, Dinamika fluida, Mekanika kontinuum Dimensi, Ruang, Waktu, Gerak, Panjang, Kecepatan, Massa, Momentum, Gaya, Energi, Momentum sudut, Torsi, Hukum kekekalan, Oscilator harmonis, Gelombang, Usaha, Daya
Elektromagnetik Elektrostatik, Listrik, Magnetisitas, Persamaan Maxwell Muatan listrik, Arus, Medan listrik, Medan magnet, Medan elektromagnetik, Radiasi elektromagnetis, Monopol magnetik
Termodinamika dan Mekanika statistik Mesin panas, Teori kinetis Konstanta Boltzmann, Entropi, Energi bebas, Panas, Fungsi partisi, Suhu
Mekanika kuantum Path integral formulation, Persamaan Schrödinger, Teori medan kuantum Hamiltonian, Partikel identik Konstanta Planck, Pengikatan kuantum, Oscilator harmonik kuantum, Fungsi gelombang, Energi titik-nol
Teori relativitas Relativitas khusus, Relativitas umum Prinsip ekuivalensi, Empat-momentum, Kerangka referensi, Waktu-ruang, Kecepatan cahaya

Sejarah fisika

=== Fisika Awal ===
Sejak zaman dulu, manusia terus memperhatikan bagaimana benda-benda di sekitarnya berinteraksi, kenapa benda yang tanpa disangga jatuh keb bawah, kenapa benda yang berlainan memiliki sifat yang berlainan juga, dan sebagainya. Mereka juga mengira-ira tentang misteri alam semesta, bagaimana bentuk dan posisi bumi di tengah alam yang luas ini dan bagaima sifat-sifat dari matahari dan bulan, dua benda yang memiliki posisi penting dalam kehidupan manusia purba. Secara umum, untuk menjawab pertanyaan-pertanyaan ini mereka secara mudah langsung mengaitkannya dengan pekerjaan dewa. Akhirnya, jawaban yang mulai ilmiah namun tentu saja masih terlalu berspekulasi, mulai berkembang. Tentu saja jawaban ini kebanyakan masih salah karena tidak didasarkan pada eksperimen, bagaimanapun juga dengan begini ilmu pengetahuan mulai mendapat tempatnya. Fisika pada masa awal ini kebanyakan berkembang dari dunia filosofi, dan bukan dari eksperimen yang sistematis.

==== Kontribusi Islam ====
Saat itu kebudayaan didominasi oleh Kekaisaran Roma, ilmu medik dan fisika berkembang sangat pesat yang dipimpin oleh ilmuwan dan filsuf dari Yunani. Runtuhnya Kekaisaran Roma berakibat pada mundurnya perkembangan ilmu pengetahuan di dataran Eropa.
Bagaimanapun juga kebudayaan di timur tengah terus berkembang pesat, banyak ilmuwan dari Yunani yang mencari dukungan dan bantuan di timur tengah ini. Akhirnya ilmuwan muslim pun berhasil mengembangkan ilmu astronomi dan matematika, yang akhirnya menemukan bidang ilmu pengetahuan baru yaitu kimia. Setelah bangsa Arab menaklukkan Persia, ilmu pengetahuan berkembang dengan cepat di Persia dan ilmuwan terus bermunculan yang akhirnya dengan giatnya memindahkan ilmu yang telah ada dari kebudayaan Yunani ke timur tengah yang saat itu sedang mundur dari Eropa yang mulai memasuki abad kegelapan.

{{ilmu-stub}}

[[Kategori:Fisika]]
[[Kategori:Sejarah ilmu pengetahuan|Fisika]]